Robust Control Synthesis for an Unmanned Underwater Vehicle
نویسنده
چکیده
The control design for unmanned underwater vehicles (UUVs) is challenging due to the uncertainties in the complex dynamic modeling of the vehicle as well as its unstructured operational environment. To cope with these difficulties, a practical robust control is therefore desirable. The paper deals with the application of coefficient diagram method (CDM) for a robust control design of an autonomous underwater vehicle. The CDM is an algebraic approach in which the characteristic polynomial and the controller are synthesized simultaneously. Particularly, a coefficient diagram (comparable to Bode diagram) is used effectively to convey pertinent design information and as a measure of trade-off between stability, response speed and robustness. In the polynomial ring, Kharitonov polynomials are employed to analyze the robustness of the controller due to parametric uncertainties. Keywords—coefficient diagram method, robust control, Kharitonov polynomials, unmanned underwater vehicles.
منابع مشابه
Nonlinear Robust Tracking Control of an Underwater Vehicle-Manipulator System
This paper develops an improved robust multi-surface sliding mode controller for a complicated five degrees of freedom Underwater Vehicle-Manipulator System with floating base. The proposed method combines the robust controller with some corrective terms to decrease the tracking error in transient and steady state. This approach improves the performance of the nonlinear dynamic control scheme a...
متن کاملSingle Input Fuzzy Logic Controller for Unmanned Underwater Vehicle
In this paper the investigation of Adaptive Single Input Fuzzy Logic Controller (ASIFLC) as robust control of an Unmanned Underwater Vehicle (UUV). Robust control methods are designed to function properly with a present of uncertain parameters or disturbances. Robust control methods aim to achieve robust performance and stability in the presence of bounded modeling errors. The UUV applied in th...
متن کاملDesign of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملDynamic Analysis and Active Damping Control for Underwater Vehicle-Manipulator Systems
Underwater vehicle-manipulator (UVM) systems have been suggested for inspection, maintenance, repair and construction of underwater structures. The addition of manipulators to the vehicle makes control of the system more difficult due to the interaction forces between vehicle and manipulator. So, the efficient compensation of those interactions should be considered for accurate control of both ...
متن کاملHardware-In-the-loop simulation platform for the design, testing and validation of autonomous control system for unmanned underwater vehicle
Significant advances in various relevant science and engineering disciplines have propelled the development of more advanced, yet reliable and practical underwater vehicles. A great array of vehicle types and applications has been produced along with a wide range of innovative approaches for enhancing the performance of unmanned underwater vehicle (UUV). These recent advances enable the extensi...
متن کامل